QUIZ DU CHAPITRE

Pour chaque question, cochez la ou les réponse(s) exacte(s):

- A. $(e^x)^2 \times (e^{-x})^2$ est égal à :
 - **a.** $2e^{x^2}$.
- b. e^{2x^2} .
- **c.** e^{4x} .
- d. 1.
- B. Dans chaque question, f est une fonction définie et dérivable sur $\mathbb R$ et f' est la fonction dérivée de f.
- 1. $f(x) = 2x + 1 + e^x$, alors:
 - a. $f'(x) = e^x$.
- **b.** $f'(x) = 3 + e^x$.
- c. $f'(x) = 2 + e^x$.
- $d.2-e^x$.
- 2. $f(x) = xe^{-x}$, alors:
 - **a.** $f'(x) = e^{-x}$.
 - **b.** $f'(x) = -e^{-x}$.
 - c. $f'(x) = (1+x)e^{-x}$.
 - **d.** $f'(x) = (1-x)e^{-x}$.
- 3. $f(x) = e^{2x+1}$, alors:
 - a. $f'(x) = \frac{1}{2} e^{2x+1}$.
 - **b.** $f'(x) = 2e^{2x+1}$.
 - c. $f'(x) = e^{2x+1}$.
 - **d.** $f'(x) = (2x+1) e^{2x+1}$.

- C. 1. Le nombre 3 est solution de l'équation :
 - a. $\ln x = -\ln 3$.
- **b.** $\ln e^x = -3$.
- **c.** $e^{\ln x} = 3$.
- **d.** $e^x = 3$.
- 2. L'équation ln(x-2) = -2 admet pour solution:
 - **a.** 0.
- **b.** $2 + e^{-2}$. **c.** 2,14.
- $d.2-e^{2}$.
- 3. Soit x un nombre réel strictement positif. Le nombre réel $\ln(2x+2)-\ln(x+1)$ est égal à :
 - a. In2.
- **b.** ln(x+1).
- $\mathbf{c.} \frac{\ln(2x+2)}{\ln(x+1)}.$
- **d**. 2.
- D. Pour tout x de]0,+ ∞ [$f(x)=2x-1-\ln x$,
 - **a.** $f'(x)=1-\frac{1}{x}$. **b.** f'(x)=2.
 - c. $f'(x)=1+\frac{1}{x}$. d. $f'(x)=2-\frac{1}{x}$.

2. d; 3. a; D. d.

V. d; B. 1. C; 2. d; 3. b; C. 1. b;

CORRIGE

Pour chaque question, cochez la ou les réponse(s) exacte(s):

- A. Dans ce qui suit, f est une fonction définie sur I et F une primitive de f sur I.
- 1. f(x) = -2x + 1, $I = \mathbb{R}$, alors:
- **a.** F(x) = -2.

b.
$$F(x) = -x^2 + x$$
.

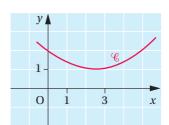
- c. $F(x) = -x^2 + x + 1$.
- 2. $f(x) = -x^2 2x + 1$, $I = \mathbb{R}$, alors:
 - **a.** $F(x) = -\frac{1}{2}x^3 x^2$.
 - **b.** $F(x) = -\frac{1}{2}x^3 x^2 + 1$.
 - c. $F(x) = -\frac{1}{3}x^3 x^2 + x + 1$.
- 3. $f(x) = x \frac{1}{x^2}$, $I =]0, +\infty[$, alors:
 - **a.** $F(x) = \frac{1}{2}x^2 + \frac{1}{x}$. **b.** $F(x) = 1 + \frac{2}{x^3}$.
 - c. $F(x) = \frac{1}{2}x^2 \frac{1}{x}$.
- 4. $f(x) = \cos 2x$, $I = \mathbb{R}$, alors:
 - $a.F(x) = -\sin 2x$.
- **b.** $F(x) = \frac{1}{2} \sin 2x$.
- **c.** $F(x) = -\frac{1}{2} \sin 2x$.
- 5. $f(x) = x 3 + e^x$, $I = \mathbb{R}$, alors:
 - $a.F(x)=1+e^{x}$.
 - **b.** $F(x) = \frac{1}{2}x^2 3x + e^x$.
 - c. $F(x) = \frac{1}{2}x^2 3 + e^x$.
- 6. $f(x) = 2x + 1 + \frac{1}{x}$, $I =]0, +\infty[$, alors:
 - a. $F(x) = 2 \frac{1}{x^2}$.
 - **b.** $F(x) = x^2 + x + \ln x$.
 - c. $F(x) = \frac{1}{2}x^2 + x \frac{1}{x^2}$
- B. On considère la fonction f définie sur $]0,+\infty[$ par $f(x)=\ln x$.

La primitive F de f sur $]0,+\infty[$ telle que F(1) = 3 est donnée par :

- **a.** $F(x) = x \ln x 2x + 5$. **b.** $F(x) = \frac{3}{x}$.
- $c.F(x) = x \ln x + 3$.
- $d.F(x) = x \ln x x + 4$.
- C. 1. f(x) = x 3, alors:
 - **a.** $\int_{-3}^{3} f(x) dx = 2$. **b.** $\int_{-3}^{3} f(x) dx = 1$.

- c. $\int_{0}^{3} f(x) dx = -2$.
- 2. $f(x) = x + \frac{1}{x}$, alors:
 - **a.** $\int_{1}^{e} f(x) dx = \frac{e^2}{2} + \frac{1}{2}$. **b.** $\int_{1}^{e} f(x) dx = e$.
 - c. $\int_{0}^{e} f(x) dx = \frac{1}{2} e + \frac{1}{2}$.
- 3. $f(x) = e^x + e^{-x}$, alors:
 - a. $\int_{0}^{1} f(x) dx = e \frac{1}{x} + 1$.
 - **b.** $\int_{1}^{1} f(x) dx = e^{-\frac{1}{2}} 1$.
 - c. $\int_{1}^{1} f(x) dx = e^{-\frac{1}{2}}$.
- 4. $f(t) = \cos\left(2t + \frac{\pi}{2}\right)$, alors:
- **a.** $\int_{0}^{\frac{\pi}{3}} f(t) dt = -\frac{\sqrt{3}}{4}$. **b.** $\int_{0}^{\frac{\pi}{3}} f(t) dt = -\frac{1}{4}$.

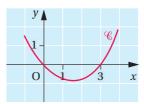
 - c. $\int_{0}^{\frac{\pi}{3}} f(t) dt = 0$.
- D. Dans chaque question $I = \int_{-3}^{3} f(x) dx$ et % est la courbe représentative de f.
- 1.



Le nombre / appartient à :

- **a.** [0, 3].
- **b.** [6, 7].
- **c.** [3, 5].

2.



Le nombre / appartient à :

- **a.** [0, 3].
- b. [-3, 0].
- c. [-1, 0].

C. 1. C; 2. b; 3. b; 4. a; 0. 1. C; 2. b.

V T. p: 5. c: 3. a: 4. p: 2. p: 6. b; B. d;

Pour chaque question, cochez la ou les réponse(s) exacte(s):

A. 1. On considère l'équation différentielle (\mathcal{E}) : y' = 2y, où y est une fonction de la variable réelle x, définie et dérivable sur \mathbb{R} , et y' la fonction dérivée de y.

Les solutions sur $\mathbb R$ de l'équation différentielle (\mathcal{E}) sont définies par :

- **a.** $f(x) = ke^x$. **b.** $f(x) = ke^{\frac{1}{2}x}$
- **c.** $f(x) = ke^{2x}$.
- **d.** $f(x) = ke^{-2x}$.
- **2.** On considère l'équation différentielle (\mathcal{E}) : $y' = \frac{1}{2}y + \frac{1}{2}$, où y est une fonction de la variable réelle x, définie et dérivable sur \mathbb{R} , et y' la fonction dérivée de y.

Les solutions sur $\mathbb R$ de l'équation différentielle (\mathcal{E}) sont définies par :

- **a.** $x \mapsto ke^{2x} 1$. **b.** $x \mapsto ke^{\frac{1}{2}x} + 1$.
- **c.** $x \mapsto ke^{\frac{1}{2}x} 1$. **d.** $x \mapsto ke^{\frac{1}{2}x} + \frac{1}{2}$.
- **3.** On considère l'équation différentielle $\{\mathcal{E}\}$: y' + 2y = 4, où y est une fonction de la variable réelle x, définie et dérivable sur \mathbb{R} , et y' la fonction dérivée de y.

La solution de (\mathcal{E}) satisfaisant à la condition initiale f(0) = 3 est définie sur \mathbb{R} par:

- \mathbf{a} , $x \mapsto e^{-2x} + 3$.
- b. $x \mapsto e^{2x} + 2$.
- $c. x \mapsto e^{-2x} + 2.$
- $\mathbf{d}. x \mapsto e^{-2x} + 4.$
- 4. On considère l'équation différentielle y' + 2y = 6 où y désigne une fonction dérivable. On note f l'unique solution de cette équation différentielle vérifiant f(0) = 5.

La valeur de f(2) est :

- a. $2e^{-4} + 3$.
- **b.** $2e^4 + 3$.
- c. $5e^{-4} + 3$.
- d. $5e^4 + 3$.

B. La vitesse de refroidissement d'un corps est proportionnelle à la différence de température entre ce corps et l'air ambiant. En désignant par $\theta(t)$ la température du corps à l'instant t exprimé en secondes, on admet que la fonction $t \mapsto \theta(t)$ est solution de l'équation différentielle (\mathcal{E}):

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k(\theta - \theta_1),$$

où k est une constante strictement positive et θ_1 la température de l'air ambiant.

- 1. Dans ce qui suit, C est une constante quelconque. Les solutions de l'équation différentielle (\mathcal{E}) sont les fonctions définies sur [0, +∞[par :
 - a. $t \mapsto C e^{-kt} + \frac{\theta_1}{k}$
 - b. $t \mapsto C e^{-kt}$
 - c. $t \mapsto C e^{-kt} + \theta_1$.
- 2. La solution de l'équation différentielle (\mathcal{E}) satisfaisant à la condition $\theta(0) = \theta_0$ est :
 - **a.** $t \mapsto \theta_0 e^{-kt} + \theta_1$.
- **b.** $t \mapsto [\theta_1 \theta_0] e^{-kt} + \theta_1$.
- c. $t \mapsto [\theta_0 \theta_1] e^{-kt} + \theta_1$.
- 3. On suppose que $\theta_1 = 20$ °C et que $\theta_0 = 70 \,^{\circ}\text{C}$.

Au bout de 5 minutes, θ vaut 60 °C. La valeur de k, arrondie à 10⁻⁵, est :

- a. 7.43×10^{-3} .
- **b.** -7.43×10^{-3} .
- c. 7.4×10^{-4} .

B. 1. c; 2. c; 3. c. A. 1. C; 2. C; 3. C; 4. a;

CORRIGE

QUIZ DU CHAPITRE 8

Pour chaque question, cochez la ou les réponse(s) exacte(s) :

- A. 1. Le nombre complexe $\frac{\sqrt{2} i\sqrt{2}}{\sqrt{2} + i\sqrt{2}}$ est égal à :
 - a. 1.
- **c.** 1.
- $\mathbf{d} \cdot -i$.
- 2. Le nombre complexe solution de l'équation 3iz + 1 = i est :

b. i.

- **a.** z = -1 2i.
- **b.** $z = \frac{1}{3} + \frac{i}{3}$.
- **c.** $z = -\frac{1}{3}$
- **d.** $z = \frac{-1-i}{3}$.
- 3. Le nombre complexe z de module $2\sqrt{3}$ et dont un argument est $\frac{2\pi}{3}$ a pour forme algébrique :
 - **a.** $\sqrt{3}$ 3i.
- **b.** $3 i\sqrt{3}$.
- **c.** $-\sqrt{3} + 3i$.
- **d.** $-3+i\sqrt{3}$.
- 4. La forme exponentielle du nombre complexe z = -5+5i est :
 - **a.** $z = 5e^{i\frac{3\pi}{4}}$.
- **b.** $z = 5\sqrt{2}e^{i\frac{3\pi}{4}}$
- **c.** $z = 5e^{-i\frac{\pi}{4}}$.
- **d.** $z = 5\sqrt{2}e^{-i\frac{\pi}{4}}$
- 5. Si $z_1 = 2\sqrt{2}e^{i\frac{3\pi}{4}}$ et $z_2 = \sqrt{2}e^{-i\frac{\pi}{3}}$, alors le produit $z_1 \times z_2$ est un nombre complexe :
 - a. de module 4 et dont un argument est $\frac{2\pi}{7}$
 - **b.** de module $2\sqrt{2}$ et dont un argument est $\frac{5\pi}{12}$.

- c. de module 4 et dont un argument est $\frac{5\pi}{12}$
- d. de module $2\sqrt{2}$ et dont un argument est $\frac{13\pi}{12}$.
- 6. On considère le nombre complexe $z=-2e^{i\frac{x}{4}}$. Soit \overline{z} le nombre complexe conjugué de z. Une écriture exponentielle de \overline{z} est :
 - **a.** $2e^{i\frac{\pi}{4}}$. **b.** $2e^{-i\frac{\pi}{4}}$. **c.** $2e^{-i\frac{5\pi}{4}}$. **d.** $2e^{i\frac{3\pi}{4}}$.
- **B.** On considère les points A, B et C du plan complexe d'affixes respectives z_A , z_B et z_C :

$$z_A = \frac{\sqrt{2} + i\sqrt{2}}{i}$$
, $z_B = 2 e^{i\frac{\pi}{3}}$, $z_C = -2 i e^{-i\frac{\pi}{6}}$.

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse.

- **1.** La forme algébrique de z_A est $\sqrt{2} i\sqrt{2}$.
- 2. Un argument de z_c est $\frac{\pi}{6}$.
- 3. Les points A, B et C sont sur un même cercle de centre O.
- 4. O est le milieu du segment [BC].