# **ENTRAÎNEMENT: CHIMIE**

#### **EXERCICE 1**

Calculer les masses molaires des composés suivants :

- oxyde d'aluminium : Al<sub>2</sub>O<sub>3</sub>;

- propane :  $C_3H_8$ .

Données :

| Éléments                          | С  | Н | 0  | Al |
|-----------------------------------|----|---|----|----|
| Masses molaires atomiques (g/mol) | 12 | 1 | 16 | 27 |

#### **EXERCICE 2**

Une bouteille de propane de formule C<sub>3</sub>H<sub>8</sub> contient 12,98 kg de gaz liquéfié. Calculer la quantité de matière de propane dans cette bouteille.

#### **EXERCICE 3**

Sur l'étiquette d'une bouteille d'eau minérale, on peut lire : « composition caractéristique en mg/L ». À la ligne « calcium », on a : 170. Calculer :

- 1. la concentration massique du calcium en g/L.
- 2. la masse de calcium contenue dans une bouteille de 1,25 L d'eau.
- 3. la quantité de matière de calcium contenu dans la bouteille.
- 4. la concentration molaire du calcium en mol/L.

**Donnée :** masse molaire du calcium  $M(Ca) = 40 \text{ g/mol (ou g.mol}^{-1}).$ 

## EXERCICE 4

Sur un résultat d'analyses sanguines, on lit « urée : 0,37 g/L ».

- 1. De quelle grandeur s'agit-il?
- 2. Calculer la masse molaire de l'urée, dont la formule est CH<sub>4</sub>N<sub>2</sub>O.

## Données:

| Éléments                          | С  | Н | 0  | N  |
|-----------------------------------|----|---|----|----|
| Masses molaires atomiques (g/mol) | 12 | 1 | 16 | 14 |

- 3. En déduire la concentration molaire de l'urée dans cet échantillon de sang.
- **4.** L'azotémie (taux normal d'urée dans le sang) est comprise entre 2,5 et 7,5 mmol/L. Ce résultat est-il satisfaisant ?

# EXERCICE 5

Un rail en acier mesure 36 m à 20 °C. Quel sera son allongement à 40 °C ?

**Donnée** : le coefficient de dilatation linéaire de l'acier est  $\alpha = 11 \times 10^{-6}$  °C<sup>-1</sup>.

#### EXERCICE 6

Un fil de fer a une longueur de 3 km à 40 °C. Quelle est sa longueur à -30 °C ?

**Donnée** : le coefficient de dilatation linéaire du fer est  $\alpha = 12,2 \times 10^{-6} \, {}^{\circ}\text{C}^{-1}$ .

#### EXERCICE 7

La hauteur de la tour Eiffel est de 300 m à 15 °C. De combien sa hauteur diminue-t-elle quand la température est de 0 °C?

**Donnée :** le coefficient de dilatation linéaire de l'acier est  $\alpha = 11 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$ .

#### **EXERCICE 8**

Un fil de cuivre a une longueur de 1 km à la température de 20 °C. Quelle doit être sa température pour qu'il s'allonge de 10 cm?

**Données :** le coefficient de dilatation linéaire du cuivre est  $\alpha = 17 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$ .

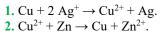
#### EXERCICE 9

À 10 °C, une boule en laiton a un diamètre de 10 cm. À quelle température faut-il chauffer la boule pour augmenter son volume de 3 cm<sup>3</sup>?

**Donnée**: le coefficient de dilatation volumique du laiton est  $k = 18.5 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$ .

**Rappel :** formule du volume de la sphère :  $V_{sphère} = \frac{4}{3} \times \pi \times R^3$ .

## **EXERCICE 10**


Donner le nombre d'atomes des molécules suivantes :

- − H<sub>3</sub>PO<sub>4</sub> (acide orthophosphorique (Coca-Cola<sup>®</sup>));
- $-C_6H_{12}O_6$  (glucose);
- NH<sub>3</sub> (ammoniac);
- CH<sub>4</sub>N<sub>2</sub>O (urée);
- $-C_{10}H_{14}N_2$  (nicotine);

Rappel: O: Oxygène, N: Azote, P: Phosphore, C: Carbone, H: Hydrogène.

# **EXERCICE 11**

Préciser, pour les réactions d'oxydoréduction suivantes, quel est le réactif oxydant et quel est le réactif réducteur.



# **EXERCICE 12**

Préciser les espèces qui peuvent réagir spontanément.

- 1. Ag et Pb<sup>2+</sup>
- Ag<sup>+</sup> et Pb
   Ni<sup>2+</sup> et Zn.
- **4.** Pb et Zn<sup>2+</sup>.

# $Ag^{+} \longrightarrow Ag$ $Cu^{2+} \longrightarrow Cu$ $H^{+} \longrightarrow H_{2}$ $Pb^{2+} \longrightarrow Pb$ $Sn^{2+} \longrightarrow Sn$ $Ni^{2+} \longrightarrow Ni$ $Fe^{2+} Fe$ $Zn^{2+} Zn$ $Al^{3+} Al$ $Mg^{2+} + Mg$

# **EXERCICE 13**

Écrire les demi-équations et l'équation-bilan : Ag<sup>+</sup> et Zn.

#### **EXERCICE 14**

- 1. Quel est le pH d'un jus d'orange dans lequel la concentration des ions  $H_3O^+$  vaut  $10^{-4}\ mol.L^{-1}$  ?
- 2. Quel est le pH d'une solution dans laquelle la concentration des ions  $H_3O^+$  vaut 0,012 mol.L $^{-1}$ ?

## **EXERCICE 15**

- 1. Un jus de citron a un pH = 2. Que vaut la concentration des ions oxonium  $[H_3O^+]$ ?
- 2. Un vinaigre a un pH = 2,8. Que vaut la concentration des ions oxonium  $[H_3O^+]$ ?

#### **EXERCICE 16**

Un chimiste veut extraire l'acide benzoïque d'un médicament antifongique (qui traite les champignons) qu'on a dissous dans l'eau.

Quel solvant extracteur doit-il choisir?

Données:

| Solvant                         | Eau    | Méthanol   | Dichlorométhane |
|---------------------------------|--------|------------|-----------------|
| Miscibilité à l'eau             |        | Bonne      | Nulle           |
| Solubilité de l'acide benzoïque | Faible | Très bonne | Très bonne      |

## **EXERCICE 17**

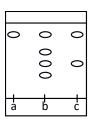
Pour extraire la caféine d'un échantillon de Coca-Cola<sup>®</sup> (solution aqueuse), on souhaite réaliser une extraction liquide-liquide à l'aide d'une ampoule à décanter. On dispose de trois solvants : dichlorométhane, éthanol et éther.

| Solvant                   | Eau    | Dichlorométhane | Éthanoate de<br>butyle | Éthanol    |
|---------------------------|--------|-----------------|------------------------|------------|
| Solubilité de la caféine  | Faible | Très bonne      | Très bonne             | Très bonne |
| Densité                   | 1      | 1,3             | 0,89                   | 0,789      |
| Miscibilité avec<br>l'eau |        | Non miscible    | Non miscible           | Miscible   |
| Danger                    |        |                 |                        |            |

- 1. Quel solvant faut-il choisir parmi ceux du tableau pour extraire la caféine ?
- 2. Dessiner l'ampoule à décanter après agitation en précisant le contenu de chaque phase.

#### **EXERCICE 18**

Lors de la synthèse du savon de Marseille, le corps gras utilisé est de l'huile d'olive, dont le constituant essentiel est le triglycéride appelé oléine.


- 1. Avec quelle espèce doit-on faire réagir l'oléine pour obtenir un savon ?
- 2. Donner le nom de la réaction.
- 3. Écrire l'équation de réaction. Entourer la formule du savon.

$$C_{17}H_{33}$$
 — $COO$  — $CH_2$  |  $C_{17}H_{33}$  — $COO$  — $CH$  |  $C_{17}H_{33}$  — $COO$  — $CH_2$ 

#### **EXERCICE 19**

Sur une plaque de silice, on effectue trois dépôts :

- (a) du butanoate d'éthyle pur ; (b) une solution  $S_1$ ; (c) une solution  $S_2$ . On plonge la plaque dans un éluant. On obtient le chromatogramme ci-
- 1. Combien d'espèces ont été mises en évidence dans la solution b? dans la solution c?
- 2. Quelle est l'espèce qui a été identifiée à la fois dans (b) et dans (c)?



#### **EXERCICE 20**

Dans les molécules suivantes, entourer le groupe caractéristique et identifier la famille d'espèce.

- 1.  $CH_3 OH$ .
- 2.  $CH_3 CH_2 CHO$ .
- 3.  $CH_3 CH_2 CO CH_3$ .
- **4.** H CHO.
- 5.  $CH_3 COO H$
- 6.  $CH_3 COO CH_3$

## CORRIGÉ

## Exercice 1

$$M(Al_2O_3) = 2 M(Al) + 3 M(O) = 2 \times 27 + 3 \times 16 = 102 \text{ g/mol (ou g.mol}^{-1}).$$
  
 $M(C_3H_8) = 3 M(C) + 8 M(H) = 3 \times 12 + 8 \times 1 = 44 \text{ g/mol (ou g.mol}^{-1}).$ 

## **Exercice 2**

$$\begin{split} n &= \frac{m}{M}.\\ M(C_3H_8) &= 3 \times 12 + 8 \times 1 = 44 \text{ g.}\\ m &= 12,98 \text{ kg soit } 12 \text{ } 980 \text{ g.}\\ n &= \frac{m}{M} = \frac{12 \text{ } 980}{44} = 295 \text{ moles.} \end{split}$$

# Exercice 3

- 1. 170 mg = 0,170 g, d'où  $c_m = 0,170$  g/L.
- 2.  $c_m = \frac{m}{V}$ , donc  $m = c_m \times V$ .

$$c_m = 0.170 \text{ g/L}.$$
  
V = 1.25 L.

$$V = 1.25 L$$
.

$$m = 0.170 \times 1.25 = 0.2125 \approx 0.213 g.$$

3. 
$$n = \frac{m}{M}$$

$$m = 0.213$$
 g.

$$M(Ca) = 40$$
 g/mol.

$$n = \frac{0,213}{40} = 0,0053$$
 mol.

4. 
$$c = \frac{n}{V}$$
.  
 $n = 0,005 \text{ 3 mol.}$   
 $V = 1,25 \text{ L.}$   
 $c = \frac{0,0053}{1,25} = 0,004 \text{ 2 mol/L.}$ 

#### **Exercice 4**

 $\begin{array}{l} \textbf{1. Il s'agit de la concentration massique } c_m. \\ \textbf{2. } M(CH_4N_2O) = M(C) + \textbf{4} \ M(H) + \textbf{2} \ M(N) + M(O). \\ M(CH_4N_2O) = 12 + \textbf{4} \ (1) + \textbf{2} \ (14) + 16 = 60 \ g/mol. \\ \textbf{3. } c = \frac{c_m}{M}. \\ c_m = 0.37 \ g/L. \\ M = 60 \ g/mol. \\ c = \frac{0.37}{60} = 0.006 \ 2 \ mol/L. \\ \textbf{4. } c = 0.006 \ 2 \ mol/L \ soit \ 6.2 \ mmol/L. \\ Or \ 2.5 < 6.2 < 7. \\ Le \ taux \ d'urée \ dans \ le \ sang \ est \ donc \ normal. \\ \end{array}$ 

## Exercice 5

Soit  $\Delta l$  l'allongement du rail.  $\Delta l = l_0.\alpha$ .  $\Delta \theta$ .  $l_0 = 36$  m, longueur à  $\theta_0 = 20$  °C.  $\Delta \theta$ : variation de température de  $\theta_0 = 20$  °C à  $\theta = 40$  °C.  $\Delta \theta = \theta - \theta_0 = 40 - 20 = 20$  °C.  $\Delta l = 36 \times 11 \times 10^{-6} \times 20 = 7$  920  $\times$  10<sup>-6</sup> m.  $\Delta l = 7.9 \times 10^{-3}$  m ou 7.9 mm.

# Exercice 6

On cherche la longueur l du fil de fer à la température  $\theta$  = -30 °C, connaissant la longueur l<sub>0</sub> à la température  $\theta_0$  = 40 °C :

$$1 = l_0.(1 + \alpha. \Delta\theta)$$
, avec  $l_0 = 3$  km.  
 $\Delta\theta = \theta - \theta_0$   
 $\Delta\theta = -30 - 40 = -70$  °C  
 $1 = 3 \times [1 + 12.2 \times 10^{-6} \times (-70)]$ .  
 $1 = 3 \times (1 - 854 \times 10^{-6})$ .  
 $1 = 2.997 \ 438$  km.

La longueur du fil ne sera plus que de 2,997 438 km.

# Exercice 7

Soit  $\Delta l$  le raccourcissement de la tour Eiffel à  $\theta=0$  °C.  $l=l_0$   $(1+\alpha.\Delta\theta)$ , donc  $\Delta l=l_0.\alpha.\Delta\theta$ .  $l_0$  est la longueur à  $\theta_0=15$  °C.  $\Delta\theta$  est la variation de température de  $\theta_0=15$  °C à  $\theta=0$  °C.  $\Delta\theta=0-15=-15$  °C.  $\Delta l=300\times11\times10^{-6}\times(-15)=-0,0495$  m, soit 4,95 cm.

Lorsque la température est de 0 °C, la tour Eiffel rétrécit de 4,95 cm par rapport à sa longueur à la température initiale de 15 °C.

#### **Exercice 8**

On cherche la variation de température  $\Delta\theta$  connaissant l'allongement  $\Delta l$ 

$$\Delta l = l_0.\alpha.\Delta\theta.$$

$$10 \text{ cm} = 0.10 \text{ m}.$$

$$0.10 = 1000 \times 17 \times 10^{-6} \times (\theta - 20).$$

$$0.10 = 0.017 \times \theta - 0.34$$
.

$$0.44 = 0.017 \times \theta$$
.

$$\theta = \frac{0.017}{0.44}.$$

$$\theta \approx 26$$
 °C.

Pour que le fil de cuivre s'allonge de 10 cm, la température doit être aux environs de 26 °C.

# **Exercice 9**

On cherche la variation de température  $\Delta\theta$ , en connaissant la variation de volume  $\Delta V$ .

$$\Delta V = V_0.k.\Delta\theta$$
, donc  $\Delta\theta = \frac{\Delta V}{k.V_0}$ 

$$\Delta V=3 \text{ cm}^3$$

 $V_0$ : volume à la température  $\theta_0 = 10$  °C.

$$V_0 = \frac{4}{3} \times \pi \times R^3$$
, avec  $R = 5$  cm.

$$V_0 = \frac{4}{3} \times \pi \times 5^3 = 523 \text{ cm}^3.$$

$$\Delta\theta = \frac{3}{18,5.10^{-6}.523} \approx 310 \text{ °C}.$$

On cherche la température à laquelle il faut chauffer :

$$\Delta\theta = \theta - \theta_0$$
, avec  $\theta_0 = 10$  °C

$$\theta = \Delta\theta + \theta_0 = 310 + 10$$

$$\theta = 320 \, ^{\circ}\text{C}$$

# Exercice 10

H<sub>3</sub>PO<sub>4</sub> 3 atomes d'hydrogène H

 $C_6H_{12}O_6$ 6 atomes de carbone C

1 atome d'azote N 3 atomes d'hydrogène H 12 atomes d'hydrogène H 6 atomes d'oxygène O

NH<sub>3</sub>

1 atome de phosphore P 4 atomes d'oxygène O

CH<sub>4</sub>N<sub>2</sub>O

 $C_{10}H_{14}N_2$ 10 atomes de carbone C

14 atomes d'hydrogène H

1 atome de carbone C

4 atomes d'hydrogène H

2 atomes d'azote N 1 atome d'oxygène O 2 atomes d'azote N

# **Exercice 11**

1. 
$$Cu + 2 Ag^+ \rightarrow Cu^{2+} + Ag$$
 est le résultat de :

$$Cu \rightarrow Cu^{2+} + 2 e^{-}.$$
  
2 Ag<sup>+</sup> + 2 e<sup>-</sup>  $\rightarrow$  Ag.

Des électrons sont transférés de Cu, donneur d'électrons, vers Ag<sup>+</sup>, récepteur d'électrons. Donc Cu est le réducteur et Ag<sup>+</sup> l'oxydant.

2. 
$$Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$$
est le résultat de :

$$Cu^{2+} + 2 e^- \rightarrow Cu$$
.  
 $Zn \rightarrow Zn^{2+} + 2 e^-$ .

Des électrons sont transférés de Zn, donneur d'électrons, vers Cu<sup>2+</sup>, accepteur d'électrons Donc Zn est le réducteur et Cu<sup>2+</sup> l'oxydant.

#### **Exercice 12**

1. Ag et  $Pb^{2+}$   $Ag^{\dagger} Ag$   $Pb^{2} Pb$ 

Le signe « gamma » est à l'envers. Il n'y a pas de réaction spontanée. 2.  $Ag^+$  et Pb  $Ag^+$  Ag

Le signe « gamma » est à l'endroit. Réaction spontanée. 3.  $Ni^{2+}$  et Zn  $Ni^{2+}$   $Zn^{2}$  Zn

Le signe « gamma » est à l'endroit. Réaction spontanée. 4. Pb et Zn2+  $Pb^{2}$   $Zn^{2}$ 

Le signe « gamma » est à l'envers. Il n'y a pas de réaction spontanée.

## Exercice 13

Les demi-équations sont :

 $Ag^{\scriptscriptstyle +} + e^{\scriptscriptstyle -} {\:\rightarrow\:} Ag \ ;$ 

 $Zn \rightarrow Zn^{2+} + 2e^{-}$ .

L'équation bilan est :

 $Zn + 2 Ag^+ \rightarrow Zn^{2+} + 2 Ag.$ 

## Exercice 14

 $pH = -log [H_3O^+]$ , avec  $[H_3O^+]$  la concentration molaire des ions oxonium en mol/L.

1. pH =  $-\log 10^{-4} = 4$ .

**2.** pH = -log(0.012) = 1.92.

# **Exercice 15**

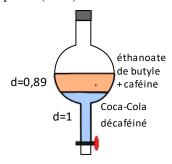
 $[H_3O^+] = 10^{-pH}$ .

1.  $[H_3O^+] = 10^{-2} \text{ mol}^{-1}$ 

**2.**  $[H_3O^+] = 10^{-2.8} = 0.001 \text{ 6 mol/L}.$ 

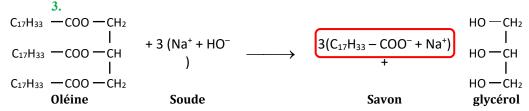
# **Exercice 16**

Les deux solvants dans lesquels l'acide benzoïque a une bonne solubilité, sont le méthanol et le dichlorométhane. On doit choisir celui qui est non miscible au solvant initial (l'eau), c'est donc le dichlorométhane.


# Exercice 17

1. Il faut choisir un solvant dans lequel la caféine a une bonne solubilité. C'est le cas des 3 solvants proposés.

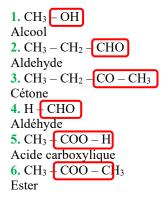
Mais ce solvant doit être non miscible à l'eau, car l'échantillon est une solution aqueuse : il reste donc le dichlorométhane et l'éthanoate de butyle.


On choisit l'éthanoate de butyle car il est moins risqué à manipuler.

2. La caféine dans l'éthanoate de butyle se place au-dessus car sa densité (d = 0.89) est inférieure à celle de la phase aqueuse  $(d \approx 1)$ .



## Exercice 18


- 1. On doit faire réagir l'oléine avec de l'hydroxyde de sodium Na<sup>+</sup> + HO<sup>-</sup>.
- 2. C'est la synthèse d'un savon : une saponification.



## Exercice 19

- 1. Le chromatogramme a révélé la présence d'au moins 4 espèces dans la solution (b), car on distingue 4 taches, et 2 espèces dans la solution (c), car on distingue 2 taches.
- 2. L'espèce commune à ces deux solutions est le butanoate d'éthyle car dans les deux cas, il y a une tache à la même hauteur que (a).

## Exercice 20

